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MINIMIZATION OF THE DENSE SUBSET

Buhyeon Kang*

Abstract. We introduced the concept of the ε0−density and the
ε0−dense ace in [1]. This concept is related to the structure of
employment. In addition to the double capacity theorem which
was introduced in [1], we need the minimal dense subset. In this
paper, we investigate a concept of the minimal ε0− dense subset in
the Euclidean m dimensional space.

1. Introduction

In this section, we introduce a concept of the locally finite ε0−dense
subset in the space Rm. And we study some properties of this concept
which we need later. Throughout this paper, ε0 ≥ 0 denotes any, but
fixed, non-negative real number. We denote the open and closed balls
with radius ε and center at α in the space Rm by B(α, ε) = {x ∈ Rm :
‖x− α‖ < ε} and B(α, ε) = {x ∈ Rm : ‖x− α‖ ≤ ε}.

Definition 1.1. Let S be a subset ofRm. A point a ∈ Rm is called an
ε0−accumulation point of the subset S if and only if B(a, ε)∩(S−{a}) 6=
∅ for all ε > ε0. And a point a ∈ S is called an ε0−isolated point of S if
and only if B(a, ε1) ∩ (S − {a}) = ∅ for some positive number ε1 > ε0.

Definition 1.2. For a subset S ofRm, the set of all the ε0−accumulation
points of S is called the ε0−derived set of S and denote it by S′(ε0).

Definition 1.3. Let E be any non-empty and open subset of Rm

and ε0 ≥ 0. And let a subset D of E be given. D is called an ε0−dense
subset of E in E if and only if E ⊆ D′(ε0) ∪D. In this case, we say that

D is ε0−dense in E.
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Definition 1.4. Let E be an open non-empty subset of Rm. And let
D be an ε0−dense subset of E in E. An element a ∈ D is called a point
of the ε0−dense ace of D in E if and only if D− {a} is not ε0−dense in
E.

Definition 1.5. Let D be a subset of Rm. The set D is called a
locally finite subset if and only if D∩B(x, ε) is a finite subset of Rm for
each positive real number ε > 0 and all x ∈ Rm.

The following lemmas 1.6, 1.7, 1.8 and corollary 1.9 are proved in [1];
theorem 2.10 ∼ theorem 2.13, and we omit the referred proofs.

Lemma 1.6. Let E be an open subset of Rm and D be a non-empty
subset of E. Suppose that E ⊆ ∪

b∈D
B(b, ε0). Then D is ε0−dense in E.

Lemma 1.7. Let D be a non-empty subset of an open subset E
of Rm and D = D′(0) ∪ D. Then D is ε0−dense in E if and only if

E ⊆ ∪
b∈D

B(b, ε0).

Lemma 1.8. Let D be a subset of an open subset E of Rm and
ε0 ≥ 0 be any, but fixed, non-negative real number. Then D is ε0−dense
in E if and only if E ⊆ ∪

b∈D
B(b, ε) for each positive real number ε > ε0.

Corollary 1.9. Let D be a subset of an open subset E of Rm and
ε0 ≥ 0 be any, but fixed, non-negative real number. Then D is not
ε0−dense in E if and only if we have B(a1, ε1)∩D = ∅ for some positive
real number ε1 > ε0 and some vector a1 ∈ E.

With regard to the locally finite ε0− subset of Rm, we have the fol-
lowing lemma which we need later.

Lemma 1.10. Let D be a locally finite subset of an open subset E
of Rm. Then D is ε0−dense in E if and only if E ⊆ ∪

b∈D
B(b, ε0).

Proof. Since if D is closed then this lemma follows from the lemma
1.7, we need only to prove that any locally finite subset of Rm is closed.
Assume that there is a locally finite subset D of Rm such that D is
not closed. Then D′ − D 6= ∅. Hence there exists α ∈ Rm such that
α ∈ D′ − D. Since α ∈ D′, the set B(α, ε) ∩ (D − {α}) is an infinite
subset of Rm for all ε > 0. This is a contradiction since D is locally
finite. Hence we have D = D.
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2. Minimization of the dense subset

In this section, we investigate the concept of the minimal ε0−dense
subset in Rm and research the shape of this set. Throughout this section,
ε0 > 0 denotes any, but fixed, positive real number. Recall that a point
a ∈ D is a point of the ε0−dense ace of D in E if and only if D−{a} is
not ε0−dense in E.

Note that if D is an ε0−dense subset of E in E for a non-empty
open subset E of Rm with ε0 > 0 then an element a ∈ D is a point
of the ε0−dense ace of D in E if and only if there is a positive real
number ε1 > ε0 and a point b ∈ E such that B(b, ε1) ∩D = {a} by the
theorem 3.3 in [1]. In this case, the point b ∈ E must satisfy the relation
‖a− b‖ ≤ ε0.

Definition 2.1. Let E be an open subset of Rm and D be a non-
empty ε0−dense subset of E. Let us denote the set of all the points
of ε0−dense ace of D in Rm by dapε0(D) or dapε0(D;Rm) and in E by
dapε0(D;E).

Note that dapε0(D;E) is countable for any ε0−dense subset D of E
by the corollary 3.4 in [1].

Definition 2.2. Let E be a non-empty open subset of Rm and D be
an ε0−dense subset of E in E. We define that D is a minimal ε0−dense
subset of E in E if and only if dapε0(D;E) = D. And we define that an
ε0−dense subset D can be minimized if and only if there is a subset D0

of D such that D0 is a minimal ε0−dense subset of D in E.

Theorem 2.3. Let E be a non-empty open subset of Rm and D be
an ε0−dense subset of E in E with ε0 > 0. Suppose that D−dapε0(D;E)
is finite. Then D can be minimized.

Proof. Let D be the given ε0−dense subset of E in E. If D =
dapε0(D;E) then D is a minimal ε0−dense subset of E in E which
completes the proof since D ⊆ D. Now suppose that D 6= dapε0(D;E).
Then D − dapε0(D;E) 6= ∅. Since this set is finite, we may set D −
dapε0(D;E) = {a1, a2, · · · , an} for some elements a′ks and some natural
number n. Since a1 is not an ε0−dense ace of D, D1 = D − {a1} is
ε0−dense in E. If D1 − {a2} = D − {a1, a2} is not ε0−dense in E then
a2 is an ε0−dense ace of the ε0−dense subset D1 = D − {a1}. In this
case, we take D2 = D1. On the other hand, if D1−{a2} = D−{a1, a2}
is ε0−dense in E then we take D2 = D1 − {a2}. Then we have

D2 − dapε0(D2;E) ⊆ {a3, · · · , an}.
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Similarly, if D2 − {a3} is not ε0−dense in E then a3 is an ε0−dense
ace of the ε0−dense subset D2. In this case, we take D3 = D2. On
the other hand, if D2 − {a3} is ε0−dense in E then we take D3 =
D2−{a3}. Then we have D3−dapε0(D3;E) ⊆ {a4, · · · , an}. Inductively,
if Dn−1 − {an} is not ε0−dense in E then an is an ε0−dense ace of the
ε0−dense subset Dn−1. In this case, we take Dn = Dn−1. On the other
hand, if Dn−1−{an} is ε0−dense in E then we take Dn = Dn−1−{an}.
Then we have Dn−dapε0(Dn;E) = ∅. This implies that Dn is a minimal
ε0−dense subset of D in E which completes the proof.

Definition 2.4. Let E be a non-empty open subset of Rm and D
be a non-empty subset of E. We define that a point a ∈ Rm is an
ε0−uncatchable or ε0−untouchable point with respect to the subset D
in E if and only if the point a is an element of the set E′ −E such that
a /∈ B(b, ε0) for all points b ∈ D.

Lemma 2.5. Let D be a subset of an open subset E of Rm and
ε0 ≥ 0 be any, but fixed, non-negative real number. Then D is ε0−dense
in E if and only if E ⊆ ∪

b∈D
B(b, ε) for each positive real number ε > ε0.

Proof. From lemma 1.8, D is ε0−dense in E if and only if E ⊆
∪
b∈D

B(b, ε) for each positive real number ε > ε0. Hence we need only

to show that E ⊆ ∪
b∈D

B(b, ε) for each positive real number ε > ε0 if and

only if E ⊆ ∪
b∈D

B(b, ε) for each positive real number ε > ε0. The suf-

ficient condition is obvious. In order to prove the necessary condition,
suppose that E ⊆ ∪

b∈D
B(b, ε) for each positive real number ε > ε0. And

let any positive real number ε > ε0 be given. Since ε+ε0
2 > ε0, we have

E ⊆ ∪
b∈D

B(b, ε+ε02 ). Since ε+ε0
2 < ε, we have

E ⊆ ∪
b∈D

B(b,
ε+ ε0

2
) ⊆ ∪

b∈D
B(b, ε).

This completes the proof.

Lemma 2.6. Let D be a subset of an open subset E of Rm and
ε0 ≥ 0 be any, but fixed, non-negative real number. Then D is ε0−dense
in E if and only if E ⊆ ∪

b∈D
B(b, ε0 + 1

p) for each natural number p ∈ N .

Proof. From lemma 2.5, D is ε0−dense in E if and only if E ⊆
∪
b∈D

B(b, ε) for each positive real number ε > ε0. Hence we need only

to show that E ⊆ ∪
b∈D

B(b, ε) for each positive real number ε > ε0 if and
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only if E ⊆ ∪
b∈D

B(b, ε0 + 1
p) for each natural number p ∈ N . The suf-

ficient condition is obvious. In order to prove the necessary condition,
suppose that any ε > ε0 be given. Then there is a natural number p ∈ N
such that ε0 + 1

p < ε. Hence we have

E ⊆ ∪
b∈D

B(b, ε0 +
1

p
) ⊆ ∪

b∈D
B(b, ε)

which completes the proof.

Lemma 2.7. Let E be a non-empty open subset of Rm and D be an
ε0−dense subset of E in E with ε0 > 0. Then there is a countable subset
D0 of D such that D0 is an ε0−dense subset of D in E.

Proof. Since E is an open subset of Rm and any closed and bounded
subset of Rm is compact, there is an increasing sequence Kn of compact
subsets of E such that E = ∪

n∈N
Kn. By lemma 2.6, we have E ⊆

∪
b∈D

B(b, ε0 + 1
p) for each natural number p ∈ N . Since Kn ⊆ E for

all natural number n, the collection {B(b, ε0 + 1
p) : b ∈ D} is an open

cover of the set Kn for each natural number n. Since Kn is compact,
there is a finite subcover of this collection for each natural number n.
Since this holds for any natural number p and the set N is countable,
for each natural number n, there is a countable subset Dn ⊆ D such
that Kn ⊆ ∪

b∈Dn

B(b, ε0 + 1
p) for each natural number p ∈ N . Take

D0 = ∪
n∈N

Dn. Then D0 is countable and E ⊆ ∪
b∈D0

B(b, ε0 + 1
p) for each

natural number p ∈ N . Hence D0 is a countable ε0−dense subset of D
in E by the lemma just above.

Definition 2.8. Let E be a non-empty open subset of Rm and D =
{dn|n ∈ N} be a countable ε0−dense subset of E. If D = {d1, · · · , dK}
is finite then we define that dn = dK for all natural numbers n ≥ K.

(a) If d1 is an ε0−dense ace of D in E then we let D1 = D and let
D1 = D − {d1} if d1 is not an ε0−dense ace of D. If d2 is an ε0−dense
ace of D1 in E then we take D2 = D1 and take D2 = D1 − {d2} if d2 is
not an ε0−dense ace of D1 in E. Inductively, if dn is an ε0−dense ace of
Dn−1 in E then we take Dn = Dn−1 and take Dn = Dn−1 − {dn} if dn
is not an ε0−dense ace of Dn−1 in E.

(b) The subset D∞ = ∩
n∈N

Dn is called the minimized cluster with

respect to the sequence {dn|n ∈ N}.
(c) The process obtaining the minimized cluster as the above is said

to be the minimizing process of {dn|n ∈ N}.
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Definition 2.9. Let D = {dn|n ∈ N} be an infinite sequence in
Rm. Let {n1, · · · , nk, · · · } be any sequence of natural numbers such
that n1 < · · · < nk < · · · . Then a sequence {dnk

|k ∈ N} is said to be
a head subsequence of D = {dn|n ∈ N} if and only if {dnk

|k ∈ N} is a
subsequence of D = {dn|n ∈ N} or dnk

= dnK for all natural numbers
k ≥ K for some natural number K.

Theorem 2.10. Let E be a non-empty open subset of Rm and D =
{dn|n ∈ N} be an ε0−dense subset of E in E with ε0 > 0. If D =
{d1, · · · , dK} is finite then we define that dn = dK for all natural num-
bers n ≥ K. Then D can be minimized if and only if there is a head
subsequence {dnk

} of {dn|n ∈ N} such that the minimized cluster with
respect to the sequence {dnk

|k ∈ N} is an ε0−dense subset of D in E.

Proof. First, suppose that D can be minimized. Then there is an ε0-
dense subset Dz of D in E such that Dz = dapε0(Dz;E). If Dz is infinite
then Dz is a subsequence of D and we may set Dz = {dnk

|k ∈ N}. If Dz

is finite then there is a head subsequence {dnk
|k ∈ N} of D such that

Dz = {dn1 , · · · , dnK} for some natural number K. Then the minimizing
cluster with respect to this head subsequence Dz = {dnk

|k ∈ N} is the
subset Dz itself since each dnk

is an ε0-dense ace of Dnk−1
. Since Dz

is ε0-dense in E, this completes the proof of the sufficient condition.
For the converse, suppose that there is a head subsequence {dnk

} of
{dn|n ∈ N} such that the minimized cluster D∞ with respect to the
sequence {dnk

|k ∈ N} is an ε0−dense subset of D in E. We need only to
show that D∞ = dapε0(D∞;E). Note that if A,B are ε0-dense subsets of
E in E such that A ⊆ B then dapε0(B;E) ⊆ dapε0(A;E). Now suppose
that D∞ 6= dapε0(D∞;E). Then there is an element dnk0

∈ D∞ such
that dnk0

is not an ε0-dense ace of D∞ in E. Since dnk0
∈ Dnk0+1

, we

have dnk0
∈ dapε0(Dnk0

;E) by the definition of the set Dnk0+1
. Hence we

must have dnk0
∈ dapε0(D∞;E) since D∞ ⊆ Dnk0

. This contradiction
completes the proof.

Theorem 2.11. Let E be a non-empty open subset of Rm and D =
{dn|n ∈ N} be an ε0−dense subset of E in E with ε0 > 0. Suppose
that D − dapε0(D;E) = {dnk

|k ∈ N}. Let C1 = D − {dn1}. If dn2 is
an ε0−dense ace of C1 then we take C2 = C1. On the other hand, we
take C2 = C1 − {dn2} if dn2 is not an ε0−dense ace of C1. Inductively,
if dnk

is an ε0−dense ace of Ck−1 then we set Ck = Ck−1. On the other
hand, we take Ck = Ck−1−{dn2} if dnk

is not an ε0−dense ace of Ck−1.
Then C0 = ∩

n∈N
Cn is the minimized cluster with respect to the sequence
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{dn|n ∈ N} and Ck =
k
∩
n=1

Cn is the minimized cluster with respect to

the sequence {dn|n ∈ N} if D − dapε0(D;E) = {dn1 , · · · , dnk
} is finite.

Proof. If D − dapε0(D;E) = ∅ then we have D = dapε0(D;E) and
the minimizing cluster with respect to the sequence D = {dn|n ∈ N}
is the set D itself. Now suppose that D − dapε0(D;E) 6= ∅. Then
D − dapε0(D;E) is finite or infinite. Suppose that D − dapε0(D;E) =
{dn1 , · · · , dnk

, · · · } is infinite. Since all the elements of {d1, · · · , dn1−1}
are the ε0−dense aces of D, we have D = D1 = D2 = · · · = Dn1−1 in the
minimizing process of {dn|n ∈ N}. Since dn1 is not an ε0−dense ace of
D = Dn1−1, we have Dn1 = Dn1−1−{dn1} = D−{dn1} = C1. Similarly,
since all the elements of {dn1+1, · · · , dn2−1} are the ε0−dense aces of D
and D − {dn1} = C1, we have Dn1 = Dn1+1 = · · · = Dn2−1 = C1 in
the minimizing process. Now if dn2 is an ε0−dense ace of Dn2−1 =
C1, then we have Dn2 = Dn2−1 = C1 = C2. On the other hand,
if dn2 is not an ε0−dense ace of Dn2−1 = C1, then we have Dn2 =
Dn2−1 − {dn2} = C1 − {dn2} = C2. Inductively, since all the elements
of {dnk−1+1, · · · , dnk−1} are the ε0−dense aces of D and Dnk−1

= Ck−1,
we have Dnk−1

= Dnk−1+1 = · · · = Dnk−1 = Ck−1. If dnk
is an ε0−dense

ace of Dnk−1 = Ck−1, then we have Dnk
= Dnk−1 = Ck−1 = Ck. On

the other hand, if dnk
is not an ε0−dense ace of Dnk−1 = Ck−1, then we

have Dnk
= Dnk−1 − {dnk

} = Ck−1 − {dnk
} = Ck. Therefore, we have

D∞ = ∩
n∈N

Dn = ∩
k∈N

Dnk
= ∩

k∈N
Ck = C0. This is also true in the case

where D − dapε0(D;E) = {dn1 , · · · , dnk
} is finite since all the elements

of {dnk+1, dnk+2, dnk+3, · · · } are the ε0−dense aces of Dnp = Ck for all
natural number p ≥ k. This completes the proof.

Example 2.12. Let E be the open subset of R2 such that E =
∪

n∈N
B((− 1

2n−1 , 0), 1) and D = {(− 1
2n−1 , 0) : n ∈ N}. Then D = D ∪

{(0, 0)}. Hence we have E ⊆ ∪
b∈D

B(b, 1). Thus D is an 1−dense subset

of E by the lemma 1.7. Now we claim that (− 1
2n−1 , 0) is an 1−dense ace

of D in E for all n ∈ N. Clearly, (−1, 0) is 1-dense ace. For each natural
number n ∈ N , consider the element (− 1

2n , 1−
1
p) with natural number

p ∈ N . We have (− 1
2n , 1−

1
p) ∈ E for all natural number p ∈ N . Choose a

natural number p0 so large that
√

( 1
2n+1 )2 + (1− 1

p0
)2 > 1. The distance

between (− 1
2n+1 , 0) and (− 1

2n , 1 −
1
p0

) is given by
√

( 1
2n+1 )2 + (1− 1

p0
)2

which is greater than 1. Hence the point (− 1
2n , 1 −

1
p0

) can not be a
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point in the union ∪
b∈D−{(− 1

2n
,0)}
B(b, 1). Hence (− 1

2n , 0) is 1-dense ace

in E for all natural number n ∈ N . Therefore, D is the minimal 1-dense
subset of D in E. Note that the point (1, 0) is an untouchable point of
E. Hence an ε0−dense subset D can be minimized even if there is an
untouchable point with respect to D.

Theorem 2.13. Let E be a non-empty open subset of Rm and D be
a locally finite ε0−dense subset of E in E with ε0 > 0. Then D can be
minimized.

Proof. Let D be a locally finite ε0−dense subset of E in E with
ε0 > 0. If E is bounded then D must be a finite ε0−dense subset in E.
Hence D can be minimized by the theorem 2.3 since D− dapε0(D;E) is
finite. Hence we need only to prove the conclusion in case where E is
unbounded and D = {dn|n ∈ N} with ‖dn‖ ≤ ‖dn+1‖. Then we have
lim
n→∞

‖dn‖ = ∞ since E is unbounded. Now let D∞ be the minimized

cluster with respect to the sequence {dn|n ∈ N}. By theorem 2.10, we
need only to show that D∞ is ε0−dense in E. Let any element x0 ∈ E
be given. Then there is a natural number K ∈ N with K > 1 such
that ‖x0‖ + 4ε0 ≤ ‖dK‖ since lim

n→∞
‖dn‖ = ∞. Consider the set DK in

the minimizing process of D which was introduced in the definition 2.8.
The set DK is ε0−dense subset of D in E and is closed since D is locally
finite. Hence there is an element dn0 of DK such that x0 ∈ B(dn0 , ε0).
Then we have ‖dn0‖ ≤ ‖dn0 − x0‖ + ‖x0‖ ≤ ε0 + ‖x0‖ < ‖dK‖. Thus
we have n0 < K. But this implies that dn0 ∈ Dn0 . Hence dn0 is an
ε0−dense ace of Dn0−1. Thus dn0 ∈ D∞. Therefore, x0 ∈ ∪

b∈D∞
B(b, ε0)

and E ⊆ ∪
b∈D∞

B(b, ε0). Since D∞ is locally finite subset of Rm, this

implies that the minimized cluster D∞ is an ε0−dense subset of D in E
by the lemma 1.10 which completes the proof.

Theorem 2.14. Let E be a non-empty open subset of Rm and D be
a subset of E such that E ⊆ ∪

b∈D
B(b, ε0) with ε0 > 0. Suppose that there

is no ε0−untouchable point with respect to D in E. Then there exists a
minimal ε−dense subset of D in E for each positive real number ε > ε0.

Proof. We first claim that E′ ⊆ ∪
b∈D

B(b, ε0). Suppose that this is not

true. Then there exists a point x0 ∈ E′ such that x0 /∈ ∪
b∈D

B(b, ε0).

Since E ⊆ ∪
b∈D

B(b, ε0), we have x0 ∈ E′ − E and x0 /∈ B(b, ε0) for each

element b ∈ D. Hence x0 is an ε0−untouchable point with respect to D



Minimal Dense Subset 41

in E. This contradiction implies that E ⊆ ∪
b∈D

B(b, ε0). Let any positive

real number ε > ε0 be given. Now we have

E ∩B(0, 4kε0) ⊆ ∪
b∈D

B(b, ε0) ⊆ ∪
b∈D

B(b, ε)

for each natural number k ∈ N . Since the subset E ∩ B(0, 4ε0) is
compact, there are some finite points d1, · · · , dn1 ∈ D such that E ∩
B(0, 4ε0) ⊆

n1∪
k=1

B(dk, ε). Inductively, since the subset E ∩ B(0, 4kε0) is

compact, there are some finite points dnk−1+1, · · · , dnk
∈ D such that

E ∩ B(0, 4kε0) ⊆
nk∪
i=1
B(di, ε). Hence we have E ⊆

∞
∪
k=1

B(dk, ε). Thus

we have E ⊆ E ⊆
∞
∪
k=1

B(dk, ε). Since {dk}∞k=1 is locally finite, this im-

plies that {dk}∞k=1 is a locally finite ε−dense subset of D in E by the
lemma 1.6. Therefore, {dk}∞k=1 can be minimized by the theorem just
above.
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