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MINIMIZATION OF THE DENSE SUBSET

BunvyeoN KANG*

ABSTRACT. We introduced the concept of the eg—density and the
eo—dense ace in [1]. This concept is related to the structure of
employment. In addition to the double capacity theorem which
was introduced in [1], we need the minimal dense subset. In this
paper, we investigate a concept of the minimal ep— dense subset in
the Euclidean m dimensional space.

1. Introduction

In this section, we introduce a concept of the locally finite ¢g—dense
subset in the space R™. And we study some properties of this concept
which we need later. Throughout this paper, ¢g > 0 denotes any, but
fixed, non-negative real number. We denote the open and closed balls
with radius € and center at « in the space R™ by B(a,¢) = {x € R™ :
|z — | < €} and B(a,e) = {x € R™: ||z — o <€}

DEFINITION 1.1. Let S be a subset of R". A point a € R™ is called an
eo—accumulation point of the subset S if and only if B(a,e)N(S—{a}) #
() for all € > €y. And a point a € S is called an ep—isolated point of S if
and only if B(a, e1) N (S — {a}) = 0 for some positive number €; > €.

DEFINITION 1.2. For a subset S of R™, the set of all the ¢g—accumulation
!

points of S is called the eg—derived set of S and denote it by S(EO).

DEFINITION 1.3. Let E be any non-empty and open subset of R™
and ey > 0. And let a subset D of E be given. D is called an eg—dense
subset of F in F if and only if £ C DEGO) U D. In this case, we say that
D is eg—dense in FE.
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DEFINITION 1.4. Let E be an open non-empty subset of R™. And let
D be an ¢g—dense subset of £ in E. An element a € D is called a point
of the ¢g—dense ace of D in E if and only if D — {a} is not eg—dense in
E.

DEFINITION 1.5. Let D be a subset of R™. The set D is called a
locally finite subset if and only if DN B(z,€) is a finite subset of R™ for
each positive real number ¢ > 0 and all z € R™.

The following lemmas 1.6, 1.7, 1.8 and corollary 1.9 are proved in [1];
theorem 2.10 ~ theorem 2.13, and we omit the referred proofs.

LEMMA 1.6.  Let E be an open subset of R™ and D be a non-empty
subset of E¥. Suppose that & C bUDB(b, €0). Then D is eg—dense in E.
€

LEMMA 1.7. Let D be a non-empty subset of an open subset E
of R™ and D = D), UD. Then D is e¢y—dense in E if and only if

_ (0)
E C U B(b,€).
beD

LEMMA 1.8. Let D be a subset of an open subset E of R™ and
€0 > 0 be any, but fixed, non-negative real number. Then D is ¢g—dense
in E if and only if E C bUDB(b, €) for each positive real number € > ¢.

€

COROLLARY 1.9. Let D be a subset of an open subset E of R™ and
€0 > 0 be any, but fixed, non-negative real number. Then D is not
eg—dense in E if and only if we have B(ay,€e1) N D = () for some positive
real number €1 > ¢g and some vector a1 € E.

With regard to the locally finite ¢g— subset of R™, we have the fol-
lowing lemma which we need later.

LEMMA 1.10.  Let D be a locally finite subset of an open subset E
of R™. Then D is ep—dense in E if and only if E C bUDB(b, €0)-
€

Proof. Since if D is closed then this lemma follows from the lemma
1.7, we need only to prove that any locally finite subset of R™ is closed.
Assume that there is a locally finite subset D of R™ such that D is
not closed. Then D’ — D # (). Hence there exists « € R™ such that
a € D' — D. Since a € D', the set B(a,€e) N (D — {a}) is an infinite
subset of R™ for all ¢ > 0. This is a contradiction since D is locally
finite. Hence we have D = D. O
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2. Minimization of the dense subset

In this section, we investigate the concept of the minimal ey—dense
subset in R and research the shape of this set. Throughout this section,
€o > 0 denotes any, but fixed, positive real number. Recall that a point
a € D is a point of the eg—dense ace of D in E if and only if D — {a} is
not eg—dense in F.

Note that if D is an ¢y—dense subset of E in E for a non-empty
open subset E of R™ with ¢y > 0 then an element a € D is a point
of the eg—dense ace of D in F if and only if there is a positive real
number €; > ¢y and a point b € E such that B(b,e;) N D = {a} by the
theorem 3.3 in [1]. In this case, the point b € E must satisfy the relation
la = bl < eo.

DEFINITION 2.1. Let F be an open subset of R™ and D be a non-
empty eg—dense subset of E. Let us denote the set of all the points
of eg—dense ace of D in R™ by dape,(D) or dape,(D; R™) and in E by
dape,(D; E).

Note that dape,(D; E) is countable for any ey—dense subset D of E
by the corollary 3.4 in [1].

DEFINITION 2.2. Let E be a non-empty open subset of R” and D be
an eg—dense subset of F in . We define that D is a minimal ej—dense
subset of E in E if and only if dape,(D; E) = D. And we define that an
ep—dense subset D can be minimized if and only if there is a subset Dy
of D such that Dy is a minimal ¢yg—dense subset of D in E.

THEOREM 2.3. Let E be a non-empty open subset of R™ and D be
an eg—dense subset of E in E with €y > 0. Suppose that D—dape,(D; E)
is finite. Then D can be minimized.

Proof. Let D be the given ey—dense subset of £ in F. If D =
dape,(D; E) then D is a minimal e¢p—dense subset of F in E which
completes the proof since D C D. Now suppose that D # dape,(D; E).
Then D — dape,(D; E) # 0. Since this set is finite, we may set D —
dape,(D; E) = {a1, a2, - ,a,} for some elements a; s and some natural
number n. Since a; is not an ¢y—dense ace of D, Dy = D — {a1} is
eo—dense in E. If D; — {as} = D — {a1, a2} is not eg—dense in E then
ay is an ep—dense ace of the eg—dense subset D1 = D — {a1}. In this
case, we take Do = Dj. On the other hand, if D; — {a2} = D — {a1, a2}
is ep—dense in F then we take Dy = D1 — {ao}. Then we have

D2 - dapeo(DQ;E) g {a37' te 7a7l}'
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Similarly, if Dy — {as} is not e¢p—dense in E then ag is an ¢y—dense
ace of the e¢g—dense subset Ds5. In this case, we take D3 = Dsy. On
the other hand, if Dy — {a3} is ¢p—dense in E then we take D3 =
Dy—{a3z}. Then we have D3 —dape,(D3; E) C {a4,--- ,an}. Inductively,
if Dy,—1 — {a,} is not eg—dense in E then a, is an eg—dense ace of the
eg—dense subset D,,_1. In this case, we take D,, = D,,_1. On the other
hand, if D,,_1 — {ay} is ep—dense in E then we take D,, = D,,_1 — {a,}.
Then we have D, —dape,(Dy; E) = 0. This implies that D,, is a minimal
eg—dense subset of D in E which completes the proof. ]

DEFINITION 2.4. Let E be a non-empty open subset of R™ and D
be a non-empty subset of E. We define that a point a € R™ is an
eg—uncatchable or eg—untouchable point with respect to the subset D
in F if and only if the point a is an element of the set £’ — F such that
a ¢ B(b, ) for all points b € D.

LEMMA 2.5.  Let D be a subset of an open subset E of R™ and
€0 > 0 be any, but fixed, non-negative real number. Then D is eg—dense
in E if and only if E C bUDB(b, €) for each positive real number € > €.

€

Proof. From lemma 1.8, D is ep—dense in E if and only if £ C
bUDB (b, €) for each positive real number € > €p. Hence we need only
€
to show that F C bUDB(b, e) for each positive real number € > ¢, if and

€
only if £ C bUDF(b, €) for each positive real number € > €. The suf-
€

ficient condition is obvious. In order to prove the necessary condition,
suppose that £ C bUDB (b, €) for each positive real number € > ¢y. And
€

let any positive real number € > ¢y be given. Since EJF% > ¢y, we have
E C U B(b, <5%®). Since £t < ¢, we have
beD 2 2

—, €+ €
EC U B(b C U B(b,e).
~ beD (b, 2 )_beD (b;€)
This completes the proof. ]

LEMMA 2.6.  Let D be a subset of an open subset E of R™ and
€o > 0 be any, but fixed, non-negative real number. Then D is ey—dense
in FE if and only if E C bUDB(b, € + %) for each natural number p € N.

€

Proof. From lemma 2.5, D is ¢g—dense in E if and only if £ C
bUDB (b,€) for each positive real number € > ¢). Hence we need only
€

to show that £ C bUDB(b, €) for each positive real number € > ¢ if and
€
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only if £ C bUDB(b, € + %) for each natural number p € N. The suf-
€

ficient condition is obvious. In order to prove the necessary condition,
suppose that any € > €g be given. Then there is a natural number p € N
such that ¢y + ]% < €. Hence we have

1
EC U B(bjeg+—) C U B(be)
beD p’ T beD

which completes the proof. ]

LEMMA 2.7. Let E be a non-empty open subset of R™ and D be an
eg—dense subset of E in EE with €g > 0. Then there is a countable subset
Dy of D such that Dy is an eg—dense subset of D in E.

Proof. Since E is an open subset of R™ and any closed and bounded
subset of R™ is compact, there is an increasing sequence K, of compact
subsets of F such that £ = UNKn. By lemma 2.6, we have E C

ne

bUDB(b, e + %) for each natural number p € N. Since K, C E for
€

all natural number n, the collection {B(b, ey + 1%) :b € D} is an open
cover of the set K, for each natural number n. Since K, is compact,
there is a finite subcover of this collection for each natural number n.
Since this holds for any natural number p and the set N is countable,
for each natural number n, there is a countable subset D,, C D such
that K, C be% B(b,eo + %) for each natural number p € N. Take

Dy = U D,. Then Dy is countable and E C U B(b, ey + 1) for each
neN beDg p

natural number p € N. Hence Dy is a countable ¢g—dense subset of D
in F by the lemma just above. O

DEFINITION 2.8. Let E be a non-empty open subset of R™ and D =
{dn|n € N} be a countable ¢g—dense subset of E. If D = {d,,--- ,dx}
is finite then we define that d,, = dx for all natural numbers n > K.

(a) If dy is an ¢g—dense ace of D in E then we let D; = D and let
Dy =D —{dy} if d; is not an ¢y—dense ace of D. If ds is an ¢y—dense
ace of Dy in F then we take Dy = Dy and take Dy = Dy — {da} if dy is
not an eg—dense ace of D in E. Inductively, if d,, is an eg—dense ace of
D, in E then we take D,, = D,_1 and take D,, = D,,_1 — {d,,} if d,,
is not an eg—dense ace of D,,_1 in F.

(b) The subset Do, = nQNDn is called the minimized cluster with

respect to the sequence {d,|n € N}.
(c) The process obtaining the minimized cluster as the above is said
to be the minimizing process of {d,|n € N}.
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DEFINITION 2.9. Let D = {d,|n € N} be an infinite sequence in
R™. Let {ny, -+ ,ng,---} be any sequence of natural numbers such
that n; < --- < mny < ---. Then a sequence {d,, |k € N} is said to be
a head subsequence of D = {d,|n € N} if and only if {d,, |k € N} is a
subsequence of D = {d,|n € N} or dy, = dp, for all natural numbers
k > K for some natural number K.

THEOREM 2.10. Let E be a non-empty open subset of R™ and D =
{dn|n € N} be an ep—dense subset of E in E with ¢¢ > 0. If D =
{di, -+ ,dg} is finite then we define that d,, = dk for all natural num-
bers n > K. Then D can be minimized if and only if there is a head
subsequence {d,, } of {d,|n € N} such that the minimized cluster with
respect to the sequence {dy, |k € N} is an eg—dense subset of D in E.

Proof. First, suppose that D can be minimized. Then there is an ¢y-
dense subset D, of D in E such that D, = dap.,(D; E). If D, is infinite
then D, is a subsequence of D and we may set D, = {d,, |k € N}.If D,
is finite then there is a head subsequence {d,, |k € N} of D such that
D, ={dp,,- -+ ,dn, } for some natural number K. Then the minimizing
cluster with respect to this head subsequence D, = {d,, |k € N} is the
subset D, itself since each d,, is an ep-dense ace of D,, ,. Since D,
is €p-dense in F, this completes the proof of the sufficient condition.
For the converse, suppose that there is a head subsequence {d,, } of
{dn|n € N} such that the minimized cluster Do, with respect to the
sequence {dy, |k € N} is an ¢p—dense subset of D in E. We need only to
show that Do, = dape,(Doo; E). Note that if A, B are ep-dense subsets of
E in E such that A C B then dape,(B; E) C dape,(A; E). Now suppose
that Doy # dape,(Doo; E). Then there is an element dnko € Dy such
that dnko is not an eg-dense ace of Dy, in E. Since alnk0 eD we
have dnko € dape, (ano ; E) by the definition of the set ano Iy
must have dnko € dapey(Dso; E) since Doy C ano. This contradiction
completes the proof. ]

’I’Lk0+1 )
Hence we

THEOREM 2.11. Let E be a non-empty open subset of R™ and D =
{dn|n € N} be an e¢y—dense subset of E in E with ey > 0. Suppose
that D — dape,(D; E) = {dn, |k € N}. Let C; = D — {dy, }. If dp, is
an eg—dense ace of C7 then we take Coy = C7. On the other hand, we
take Cy = C1 — {dy,} if dp, is not an ep—dense ace of C;. Inductively,
if dy,, is an eg—dense ace of Cy_1 then we set C}, = Cj_1. On the other
hand, we take Cy, = Cy—1 — {dp, } if dy, is not an eg—dense ace of Cj_.
Then Cy = nQNC’n is the minimized cluster with respect to the sequence
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{dn|n € N} and C}, = ﬂ C’n is the minimized cluster with respect to
the sequence {d,|n € N} 1fD dape,(D; E) = {dp,, - ,dp, } is finite.

Proof. If D — dape,(D; E) = 0 then we have D = dape,(D; E) and
the minimizing cluster with respect to the sequence D = {d,|n € N}
is the set D itself. Now suppose that D — dape,(D; E) # (). Then
D — dape,(D; E) is finite or infinite. Suppose that D — dap.,(D; E) =
{dp,, - ,dpn,,---} is infinite. Since all the elements of {d1,--- ,dy, -1}
are the eg—dense aces of D, we have D = Dy = Dy = --- = D,, 1 in the
minimizing process of {d,|n € N}. Since d,, is not an ey—dense ace of
D = Dy, 1, we have Dy, = Dy,_1—{dp,} = D—{dy,, } = Cy. Similarly,
since all the elements of {d,, 11, ,dn,—1} are the ¢y—dense aces of D
and D — {d,, } = C1, we have D,,, = Dp,41 = -+ = Dp,—1 = C} in
the minimizing process. Now if d,, is an ey—dense ace of D,,_1 =
C1, then we have D,, = Dp,_1 = C; = Cs. On the other hand,

if dy, is not an ey—dense ace of D,,_1 = Ci, then we have D,, =
Dy,—1 —A{dn,} = C1 — {dn,} = Ca. Inductively, since all the elements
of {dn,_,+1, -+ ,dn,—1} are the ep—dense aces of D and D,,, , = Cy_1,
we have Dy, , =Dy, 41 =+"-=Dp,_1 = Cr_1. If dy, is an eg—dense

ace of Dy, 1 = Ck—_1, then we have D,,, = D,,_1 = Cr_1 = Cj,. On
the other hand, if d,,, is not an eg—dense ace of D, _1 = C}_1, then we
have Dy, = Dp,—1 — {dn,} = Cr—1 — {dn,} = Ck. Therefore, we have
Dy = ND,= ND, = kQNOk = (Cy. This is also true in the case

neN keN
where D — dape,(D; E) = {dn,, - ,dy, } is finite since all the elements
of {dny+1,dny42,dn,+3,- -} are the eg—dense aces of D,,, = C}, for all
natural number p > k. This completes the proof. ]

EXAMPLE 2.12. Let E be the open subset of R? such that E =

U B((—,0),1) and D = {(—5++,0) : n € N}. Then D = D U
neN

{(0,0)}. Hence we have E C U B(b,1). Thus D is an 1—dense subset
beD

of E by the lemma 1.7. Now we claim that (— 2n 57—, 0) is an 1—dense ace

of D in E for alln € N. Clearly, (—1,0) 1s 1-dense ace. For each natural

number n € N, consider the element (—5-,1 — %) with natural number

p € N. We have (—2%, 1—5) € FE for all natural numberp € N. Choose a

natural number pg so ]arge that \/ 271% 2+(1- i)2 > 1. The distance

2.1~ L) is given by \/(2%)2 +(1— L)

which is greater than 1. Hence the point (—x,1 — —0) can not be a

between (—QH%,O) and (—sx
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point in the union U B(b,1). Hence (—5=,0) is I-dense ace
beD—{(—5r,0)}

in E for all natural number n € N. Therefore, D is the minimal 1-dense

subset of D in E. Note that the point (1,0) is an untouchable point of

FE. Hence an eg—dense subset D can be minimized even if there is an

untouchable point with respect to D.

THEOREM 2.13. Let E be a non-empty open subset of R™ and D be
a locally finite eg—dense subset of ¥ in E¥ with ¢g > 0. Then D can be
minimized.

Proof. Let D be a locally finite e¢g—dense subset of F in E with
€9 > 0. If E is bounded then D must be a finite e¢g—dense subset in FE.
Hence D can be minimized by the theorem 2.3 since D — dap,(D; E) is
finite. Hence we need only to prove the conclusion in case where E is
unbounded and D = {d,|n € N} with ||d,|| < ||dn+1]|. Then we have
ngl)go ||dn|| = oo since E is unbounded. Now let Do, be the minimized

cluster with respect to the sequence {d,|n € N}. By theorem 2.10, we
need only to show that D, is ¢g—dense in E. Let any element xg € E
be given. Then there is a natural number K € N with K > 1 such
that ||zo|| + 4eo < ||dk|| since Jgngo]\dn]\ = 0o. Consider the set Dk in
the minimizing process of D which was introduced in the definition 2.8.
The set D is eg—dense subset of D in E and is closed since D is locally
finite. Hence there is an element d,,, of Dy such that z¢ € E(dno, €0)-
Then we have ||dp,|| < ||dn, — ol + |zol| < €0 + [|zo]| < ||dk|]. Thus
we have ng < K. But this implies that d,, € D,,. Hence d,, is an
eo—dense ace of Dy,_1. Thus dy, € D. Therefore, z¢ € beL[J) B(b,e0)

and £ C , % B(b,€). Since Dy, is locally finite subset of R™, this
€Doo

implies that the minimized cluster D, is an ¢yg—dense subset of D in F
by the lemma 1.10 which completes the proof. O

THEOREM 2.14. Let E be a non-empty open subset of R™ and D be
a subset of E such that E C bUDB(b, €0) with ¢g > 0. Suppose that there
€

is no eg—untouchable point with respect to D in E. Then there exists a
minimal e—dense subset of D in E for each positive real number € > €.

Proof. We first claim that £’ C bUDP(b, €0). Suppose that this is not
€
true. Then there exists a point zgp € E’ such that zg ¢ bUDE(b, €0)-
€
Since E C bUDE(b, €0), we have 19 € E' — E and zo ¢ B(b, ) for each
€

element b € D. Hence xg is an ¢g—untouchable point with respect to D
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in E. This contradiction implies that E C bUDE(b, €o). Let any positive
€
real number € > €y be given. Now we have

ENDB,4%¢) C U B(b,eg) C U B(b
nB(, 60)‘&5[) <760)_bgD (b:€)

for each natural number k € N. Since the subset E N B(0,4€) is
compact, there are some finite points dy,--- ,d,, € D such that E N

B(0,4¢p) C kTJllB(dk, ¢). Inductively, since the subset E N B(0,4%¢q) is
compact, there are some finite points d,, 41, -+ ,dn, € D such that

E N B(0,4%¢) C ﬁlB(di,e). Hence we have E C koLcle(dk,e). Thus
1= =

we have E C E C koglg(dk,e). Since {dj}32, is locally finite, this im-

plies that {d;}72, is a locally finite e—dense subset of D in E by the
lemma 1.6. Therefore, {dj}32, can be minimized by the theorem just
above. O
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